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Abstract 23 

As a key variable in the climate system, soil moisture (SM) plays a central role in the 24 

earth’s terrestrial water, energy, and biogeochemical cycles through its coupling with 25 

surface latent heat flux (LH). Despite the need to accurately represent SM/LH coupling in 26 

earth system models, we currently lack quantitative, observation-based, and unbiased 27 

estimates of its strength. Here, we utilize the triple collocation (TC) approach introduced in 28 

Crow et al. (2015) to SM and LH products obtained from multiple satellite remote sensing 29 

platforms and land surface models (LSMs) to obtain unbiased global maps of SM/LH 30 

coupling strength. Results demonstrate that, relative to coupling strength estimates acquired 31 

directly from remote sensing-based datasets, the application of TC generally enhances 32 

estimates of warm-season SM/LH coupling, especially in the western United States, the 33 

Sahel, Central Asia, and Australia. However, relative to triple collocation estimates, LSMs 34 

(still) over-predict SM/LH coupling strength along transitional climate regimes between wet 35 

and dry climates, such as the central Great Plains of North America, India, and coastal 36 

Australia. Specific climate zones with biased relations in LSMs are identified to 37 

geographically focus the re-examination of LSM parameterizations. TC-based coupling 38 

strength estimates are robust to our choice of LSM contributing SM and LH products to the 39 

TC analysis. Given their robustness, TC-based coupling strength estimates can serve as an 40 

objective benchmark for investigating model predicted SM/LH coupling. 41 

42 



Plain Language Summary 43 

Physical models describing land-atmosphere coupling have been developed to help 44 

better understand the impact of local, regional, and global-scale climate on weather and the 45 

water cycle. However, verifying the accuracy of these models is challenging over sparsely 46 

instrumented areas. Here, the strength of land-atmosphere coupling between soil moisture 47 

and terrestrial evapotranspiration is examined by combining multiple global-scale remote 48 

sensing and modeling products into a unified analysis. This analysis is unique in that it can 49 

be conducted globally and is unbiased by the presence of random errors in the remote 50 

sensing products.  As such it provides the first robust estimate of the degree to which soil 51 

moisture and evapotranspiration are linked. Results show strong soil 52 

moisture/evapotranspiration coupling over the Western United States, the African Sahel, 53 

Central Asia, and Australia. However, they also demonstrate that most existing models are 54 

still over-predicting this coupling along transitional regions between wet and dry climates 55 

(like the Central Great Plains of North America, India, and coastal Australia). This work will 56 

help improve the representation of land-atmosphere coupling in models used to obtain 57 

future climate projections. 58 

59 



1. Introduction60 

Soil moisture (SM), through its direct limiting effect on surface latent heat flux (LH), 61 

modulates feedbacks between the land surface and the lower atmosphere (Koster et al., 62 

2004; Guo et al., 2006; Jung et al., 2010; Combe et al., 2016). For regions with a strong causal 63 

relationship between SM and surface LH, this coupling can significantly affect terrestrial 64 

water, energy, and biochemical cycles in a changing climate (Seneviratne et al., 2010, 2013). 65 

Despite the widespread application of land surface models (LSMs) to conceptually diagnose 66 

this coupling relationship (Van den Hurk et al., 2011), there is no clear consensus on the true 67 

strength of terrestrial SM/LH coupling across the globe. Moreover, global observation-based 68 

quantification and validation of this relationship within LSMs have not yet been attempted 69 

(Dirmeyer et al., 2006a, 2009, 2018; Best et al., 2015). 70 

The limiting effect of SM on LH is generally characterized as a first-order causal 71 

relationship within LSMs (Dirmeyer et al., 2006b). Validation practices of a model’s ability 72 

to characterize this coupling are commonly based on sampling mutual information proxies 73 

(e.g., correlation coefficient or the coupling index proposed by Dirmeyer et al., 2011) 74 

acquired from collocated SM and LH time series observations (Dirmeyer et al., 2009, 2018; 75 

Loew et al., 2017). However, these proxies are usually biased low due to the existence of 76 

random measurement errors in any instrument-based observation (i.e., remotely-sensed 77 

retrievals or ground measurements) (Crow et al., 2015; Findell et al., 2015) and scale 78 

representative differences between local observations and a (coarser-scale) modeling grid 79 

(Dirmeyer et al., 2018). Therefore, unbiased, observation-based estimates of SM/LH 80 

coupling strength are difficult to acquire. 81 



Recent progress in triple collocation (TC) analysis (McColl et al., 2014; Gruber et al., 82 

2016a) offers a strategy for deriving unbiased estimates of SM/LH coupling strength. 83 

Specifically, if triplets of LH and SM can be obtained from mutually independent sources, TC-84 

based approaches allow us to estimate the variance of random errors affecting all three 85 

estimates of both LH and SM. This information, in turn, can be used to compensate sampled 86 

estimates of SM/LH coupling strength for the (degrading) impact of these errors on sampled 87 

correlations between SM and LH. 88 

Using collocated SM and LH estimates obtained from ground measurements, remote 89 

sensing (RS) and a LSM, Crow et al. (2015) provided a proof-of-concept for the robust 90 

estimation of the SM/LH coupling strength via TC analysis. However, Crow et al. (2015) 91 

focused only on a handful of sites across the United States where long-term, high-quality, 92 

ground-based SM and LH measurements are available. Moving from their site-based 93 

approach to a continuous global investigation requires the simultaneous availability of two 94 

satellite-based products for SM and LH that are sufficiently independent for a TC analysis. 95 

Fortunately, recent advances in remotely-sensed SM using passive and active microwave 96 

sensors (Kumar et al., 2018) and RS-based LH using satellite-based land surface temperature 97 

(LST) products obtained from both thermal-infrared and microwave sensors (Anderson et 98 

al., 2011; Holmes et al., 2018) provide such an opportunity. 99 

Bolstered by this newly developed TC method, and the simultaneous availability of 100 

remotely-sensed SM and LH datasets from multiple independent sources, this work seeks to 101 

obtain unbiased global estimates of terrestrial SM/LH coupling strength. Section 2 reviews 102 

the TC approach previously developed by Crow et al. (2015) as well as the RS- and LSM-103 

based datasets used to construct the data triplets required by this approach. Results are 104 



presented in Section 3 and discussed in Section 4. Main conclusions are then summarized in 105 

Section 5. 106 

107 

2. Method and Datasets108 

2.1 Triple Collocation-based Coupling Strength Metric 109 

For geophysical variables with at least three independent estimates, the mutually 110 

uncorrelated random error variances contained within these estimates can be determined 111 

through the triple collocation (TC) method (Stoffelen, 1998; McColl et al., 2014; Gruber et al., 112 

2016a). This approach assumes each of the three estimates (𝑋𝑋𝑖𝑖) follows a linear error model: 113 

𝑋𝑋𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑇𝑇 + 𝜀𝜀𝑖𝑖 ,      𝑖𝑖 ∈ [1, 2, 3] (1) 114 

where 𝛼𝛼 and 𝛽𝛽 are temporally-constant additive and multiplicative biases, and 𝜀𝜀 is zero-115 

mean random error which is independent of the truth 𝑇𝑇, i.e., error orthogonality. Based on 116 

these assumptions, the variances and the covariances for the three datasets can be written 117 

as: 118 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋𝑖𝑖] = 𝛽𝛽𝑖𝑖2𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇] + 𝑉𝑉𝑉𝑉𝑉𝑉[𝜀𝜀𝑖𝑖] (2) 119 

𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗] = 𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇] + 𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑖𝑖 , 𝜀𝜀𝑗𝑗] (3) 120 

where 𝑖𝑖, 𝑗𝑗 ∈ [1, 2, 3], and the operators 𝐶𝐶𝐶𝐶𝐶𝐶[∙] and 𝑉𝑉𝑉𝑉𝑉𝑉[∙] denote the covariance and temporal 121 

variance, respectively. In TC applications, the three datasets are usually assumed to have 122 

mutually independent errors and therefore 𝐶𝐶𝐶𝐶𝐶𝐶�𝜀𝜀𝑖𝑖 , 𝜀𝜀𝑗𝑗� = 0 when 𝑖𝑖 ≠ 𝑗𝑗. Thus, from (2) and 123 

(3), the true signal variance (using one dataset as a reference) and random error variances 124 

of each dataset can be derived as: 125 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]𝑖𝑖 = 𝛽𝛽𝑖𝑖−2
 𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗]𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑖𝑖,𝑋𝑋𝑘𝑘]

𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘]
(4)126 



𝑉𝑉𝑉𝑉𝑉𝑉[𝜀𝜀𝑖𝑖] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋𝑖𝑖] −
 𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗]𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑖𝑖,𝑋𝑋𝑘𝑘]

𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘]
(5) 127 

where 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ∈ [1, 2, 3] and 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘. Here, 𝑋𝑋𝑖𝑖 is chosen as the reference to obtain the true 128 

signal variance 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]𝑖𝑖 . 129 

Instead of estimating the random error variance of an unknown signal observed by 130 

three datasets as described above, Crow et al. (2015) extended TC to estimate the coupling 131 

strength between two different geophysical variables, namely SM and LH. The basic 132 

assumptions are same as in classic TC, that is, all measurements are linearly related to their 133 

corresponding true values 134 

𝑆𝑆𝑆𝑆𝐴𝐴 = 𝛼𝛼𝐴𝐴 + 𝛽𝛽𝐴𝐴𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝜀𝜀𝐴𝐴,      𝐴𝐴 ∈ [𝑖𝑖, 𝑗𝑗, 𝑘𝑘] (6) 135 

𝐿𝐿𝐿𝐿𝐵𝐵 = 𝛼𝛼𝐵𝐵 + 𝛽𝛽𝐵𝐵𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝜀𝜀𝐵𝐵 ,      𝐵𝐵 ∈ [𝑙𝑙,𝑚𝑚,𝑛𝑛] (7) 136 

where 𝛼𝛼 and 𝛽𝛽 represent additive and multiplicative systematic errors of each dataset with 137 

regard to the (unknown) truth 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝜀𝜀 denotes zero-mean random error with temporally 138 

constant variance, and A and B represent three independent estimates of SM and LH, 139 

respectively. By further assuming the mutual independence of random errors 𝜀𝜀 within each 140 

triplet and the orthogonality of all errors with respect to its respective truth, the coefficient 141 

of determination 𝑅𝑅2 between two different geophysical variables can be solved as: 142 

𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖,𝑙𝑙 ≡
𝐶𝐶𝐶𝐶𝐶𝐶[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑢𝑢𝑢𝑢]𝑖𝑖,𝑙𝑙

2

𝑉𝑉𝑉𝑉𝑉𝑉[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉[𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑙𝑙
143 

= 𝐶𝐶𝐶𝐶𝐶𝐶[𝑆𝑆𝑆𝑆𝑖𝑖,𝐿𝐿𝐿𝐿𝑙𝑙]2𝐶𝐶𝐶𝐶𝐶𝐶�𝑆𝑆𝑆𝑆𝑗𝑗,𝑆𝑆𝑆𝑆𝑘𝑘�𝐶𝐶𝐶𝐶𝐶𝐶[𝐿𝐿𝐿𝐿𝑚𝑚,𝐿𝐿𝐿𝐿𝑛𝑛]
𝐶𝐶𝐶𝐶𝐶𝐶�𝑆𝑆𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆𝑗𝑗�𝐶𝐶𝐶𝐶𝐶𝐶[𝑆𝑆𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆𝑘𝑘]𝐶𝐶𝐶𝐶𝐶𝐶[𝐿𝐿𝐿𝐿𝑙𝑙,𝐿𝐿𝐿𝐿𝑚𝑚]𝐶𝐶𝐶𝐶𝐶𝐶[𝐿𝐿𝐿𝐿𝑙𝑙,𝐿𝐿𝐿𝐿𝑛𝑛]

(8) 144 

where 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘 and 𝑙𝑙 ≠ 𝑚𝑚 ≠ 𝑛𝑛. The advantage of (8), as opposed to the direct sampling of 145 

𝑅𝑅2 between any two SM and LH products, is that (8) is unbiased in the presence of random 146 

observational errors. Therefore, it provides a means for estimating true coupling strength 147 



between SM and LH using error-prone data (e.g., remote-sensing retrievals of 𝑆𝑆𝑆𝑆𝐴𝐴 and 𝐿𝐿𝐿𝐿𝐵𝐵). 148 

A more detailed derivation for (8) can be found in Crow et al. (2015). 149 

Note that an arbitrary “reference pair” of 𝑆𝑆𝑆𝑆𝑖𝑖 and 𝐿𝐿𝐿𝐿𝑙𝑙 products is applied within the 150 

numerator of (8). If all such pairings are free from cross-correlated estimation errors 151 

(𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑖𝑖 , 𝜀𝜀𝑙𝑙] = 0), the use of any single pair should not bias correlation results. Thus, 152 

considering all possible combinations of 𝑆𝑆𝑆𝑆𝑖𝑖 and 𝐿𝐿𝐿𝐿𝑙𝑙 from each corresponding triplet, nine 153 

estimates of 𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖,𝑙𝑙 can be obtained in total from (8). However, certain 154 

reference pairs may possess correlated LH and SM errors, specifically when both 𝑆𝑆𝑆𝑆𝑖𝑖 and 155 

𝐿𝐿𝐿𝐿𝑙𝑙 are obtained from the same LSM. Therefore, a robust final estimate of 𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇] 156 

can be achieved by taking the median of results obtained from reference pairs deemed to 157 

include mutually independent SM and LH errors. The reference pairs used here are fully 158 

described below in Section 2.5. 159 

In real-case applications, Crow et al. (2015) acquired their SM and LH triplets from 160 

mutually independent ground-, RS- and LSM-based sources. However, this strategy limited 161 

the geographic extent of their approach to only a handful of heavily instrumented sites in the 162 

United States. Therefore, a key challenge is substituting new remotely-sensed sources of LH 163 

and SM estimates into the analysis (to eliminate Crow et al. (2015)’s reliance on ground data) 164 

without violating the error independence assumption on which TC is based. More detailed 165 

explanations are included in Section 3.1 and the impact of potential violation of assumptions 166 

will be discussed in Section 4.1. 167 

168 

2.2 Remotely-sensed Soil Moisture Datasets 169 



Given that the physical mechanism for retrieving SM using active scatterometer 170 

versus passive radiometer varies considerably, simultaneous SM retrievals acquired from 171 

both active and passive microwave sensors, in combination with LSM estimates, are 172 

commonly utilized together in TC applications (Draper et al., 2013; Su et al., 2014; Gruber et 173 

al., 2016a). 174 

Here, global passive microwave (PMW) SM retrievals were obtained from the 175 

European Space Agency (ESA) Climate Change Initiative (CCI) product version 03.2 (Dorigo 176 

et al., 2017; Dorigo et al., 2018) between 1978 and 2015 at 0.25° spatial resolution 177 

(https://www.esa-landcover-cci.org/). This product was generated using a rigorous 178 

blending scheme that combines all Level 2 SM retrievals from available sensors into a 179 

(single) weighted optimal estimate using their corresponding error variances (Gruber et al., 180 

2017). All PMW SM retrievals were derived via the same Land Parameter Retrieval Model 181 

(LPRM, Owe et al., 2008) that interprets brightness temperature measurements of several 182 

sensors. From 2007 onwards, this record includes: the Advanced Microwave Scanning 183 

Radiometer-Earth Observing System (AMSR-E) on board the NASA EOS Aqua satellite (Njoku 184 

et al., 2003), WindSat on board the Coriolis satellite (Parinussa et al., 2012), the Microwave 185 

Imaging Radiometer using Aperture Synthesis (MIRAS) on board Soil Moisture and Ocean 186 

Salinity (SMOS) mission (Kerr et al., 2010), and AMSR2 on board Global Change Observation 187 

Mission-Water (GCOM-W1) (Parinussa et al., 2015). Considering that more isothermal 188 

conditions in near-surface temperature profiles benefit the retrieval of surface soil moisture 189 

from passive microwave sensors, only night-time or early-morning retrievals were used in 190 

the merged ESA CCI-PASSIVE product (Liu et al., 2012). Note that the quality flags associated 191 

with the SM retrievals from each individual sensor were considered to screen for frozen soil 192 



conditions and dense vegetation (where the frequency dependent vegetation optical depth 193 

values >0.8 indicate that the canopy is too opaque for interpretation of the soil emission). 194 

The merged ESA CCI-PASSIVE SM product has been found to be superior to any single-sensor 195 

product (Dorigo et al., 2017). 196 

Scatterometer-based SM retrievals were acquired using the Vienna University of 197 

Technology (TU-Wien) change detection algorithm (Naeimi et al., 2009) to C-band (5.255 198 

GHz) Advanced SCATterometer (ASCAT) radar instrument on board the ESA MetOp satellite. 199 

The Level 2 SM product can be accessed from the EUropean organization for the exploitation 200 

of METerological SATellites (EUMETSAT) Satellite Application Facility on Support to 201 

Operational Hydrology and Water Management (H-SAF) website (http://hsaf.meteoam.it/ 202 

soil-moisture.php). This product has a spatial resolution of 25×25 km with a grid spacing of 203 

12.5 km and was resampled onto a regular 0.25° grid using an inverse-distance-weighted-204 

averaging approach. Active microwave (AMW) SM retrievals from both overpasses at 9:30 205 

a.m./p.m. local solar time were averaged into a daily product from January 2007 onwards.206 

Retrievals were also filtered for frozen soil conditions based on auxiliary flag information. 207 

208 

2.3 Remote Sensing-based Latent Heat Flux Datasets 209 

Diagnostic algorithms are commonly implemented for the derivation of LH estimates 210 

from RS data using LST derived from thermal infrared (TIR) imagery. Using the core 211 

framework of the two-source energy balance algorithm, LH retrievals can be derived from 212 

the Atmosphere Land Exchange Inverse (ALEXI) model using TIR-based LST from both 213 

geostationary and polar-orbiting satellite sensors. Here, continuous weekly ALEXI-TIR LH 214 

retrievals were derived at a global spatial resolution of 0.05° from 2003 to 2013 using clear-215 



sky LST retrievals acquired from the Moderate Resolution Imaging Spectroradiometer 216 

(MODIS) TIR sensor. For additional details, see Hain and Anderson (2017). Hereinafter, this 217 

TIR-based approach will be referred to as the “ALEXI-TIR” algorithm. 218 

LST can also be derived via passive microwave observations — opening up the 219 

possibility for deriving a new source of RS-based LH estimates. To this end, Holmes et al. 220 

(2015) re-constructed the LST diurnal cycle based on Ka-band brightness temperature 221 

observations acquired from a constellation of microwave satellites, including AMSR-E, 222 

AMSR-2, and WindSat. This new source of diurnal LST information was then used to run the 223 

ALEXI energy balance model to generate MW-based LH estimates at 0.25° global spatial 224 

resolution (Holmes et al., 2018). Hereinafter, this MW-based approach will be referred to as 225 

the “ALEXI-MW” algorithm. 226 

Meteorological inputs for both the ALEXI-TIR and ALEXI-MW algorithms were 227 

acquired from the National Centers for Environmental Prediction (NCEP) Climate Forecast 228 

System Reanalysis (CFSR) and CFS-v2 product (Saha et al., 2010; 2014). Surface albedo and 229 

leaf area index were extracted from MODIS MOD43C and MOD15A products, respectively. 230 

Note that the most recent global ALEXI-TIR and ALEXI-MW LH products are at a weekly 231 

temporal resolution from 2003 to 2013. Recent comparisons of ALEXI-TIR and ALEXI-MW 232 

products against in-situ Fluxnet measurements demonstrated satisfactory accuracies in both 233 

products (Holmes et al., 2018). Thus, continuous weekly ALEXI-TIR and ALEXI-MW products 234 

were used without further masking. 235 

Despite the application of an identical ALEXI modeling framework, LST inputs for 236 

ALEXI-TIR and ALEXI-MW (i.e., their key input) are derived from distinct spectral regimes 237 

with statistically independent error characteristics (Li et al., 2006). Therefore, our 238 



assumption is that LH estimates derived from different spectral bands will be mutually 239 

independent and are therefore suitable for application within the same TC triplet. Additional 240 

support for this assumption will be presented below in Section 3.1. 241 

242 

2.4 Land Surface Models 243 

The Global Land Data Assimilation System (GLDAS) is designed to produce global 244 

fields of terrestrial water and energy fluxes and storages by incorporating various satellite 245 

and ground-based observations into offline simulations of advanced LSMs (Rodell et al., 246 

2004), including Noah version 3.3 (Chen et al., 1996, Ek et al., 2003), Community Land Model 247 

(CLM) version 2.0 (Dai et al., 2003), Catchment Land Surface Model (CLSM) F2.5 (Koster et 248 

al., 2000), and the Variable Infiltration Capacity (VIC) (Liang et al., 1994) model run in water 249 

balance mode. From year 2001 onwards, the meteorological forcing datasets of GLDAS-1 and 250 

GLDAS-2 are mainly combined from National Oceanic and Atmosphere Administration 251 

(NOAA)/Global Data Assimilation System atmospheric analysis fields, the spatially and 252 

temporally disaggregated NOAA Climate Precipitation Center Merged Analysis of 253 

Precipitation (CMAP) and Global Precipitation Climatology Project (GPCP) precipitation 254 

fields. Additionally, radiation fields are derived using the Air Force Weather Agency’s 255 

AGRicultural METeorological modeling system (Rodell et al., 2004). GLDAS-2 Noah and 256 

CLSM simulations were run at a spatial resolution of 0.25°, and GLDAS-1 CLM and VIC models 257 

were at 1°. 258 

Here, each pair of SM and LH fluxes from different LSM simulations was individually 259 

averaged from 3-hourly model simulations to daily values. Note that soil layer depths vary 260 

across LSMs. In particular, soil moisture estimates from the top first layer were extracted for 261 



Noah, VIC and CLSM using their 0−0.1, 0−0.1 and 0−0.02 m soil layers, respectively. For CLM, 262 

the top three soil layers were averaged to a total depth of 0−0.091 m. 263 

264 

2.5 Data Pre- and Post-processing 265 

Before estimating SM/LH coupling strength, both RS- and LSM-based fluxes were pre-266 

processed with consideration of their native spatial, temporal and vertical resolutions (listed 267 

in Table 1). First, all RS-based SM and LH retrievals were spatially resampled onto a regular 268 

0.25° grid, and 1.00° LSM-based fluxes were spatially downscaled onto the same 0.25° grid. 269 

Second, due to their limited soil penetration capability, remotely-sensed SM retrievals depict 270 

a shallower vertical depth support than LSM-based SM estimations, usually on the order of 271 

0 − 5 cm. Here, the exponential filtering approach developed by Albergel et al. (2008) was 272 

applied to effectively increase the vertical representation of daily RS-based SM time series 273 

by dampening its high-frequency signals. The key time scale parameter required by the filter 274 

was assumed to be temporally constant and tuned for each 0.25° grid using the Noah first 275 

layer (0−0.1 m) SM product as a comparison dataset. Finally, as mentioned above, the most 276 

recent global ALEXI-TIR and ALEXI-MW LH products are weekly summations. As a result, all 277 

RS- and LSM-based SM and LH fluxes were averaged from daily to weekly values after the 278 

aforementioned processing. Constrained by the temporal coverage of RS-based SM and LH 279 

retrievals, our analysis focused on the period 2007 to 2013. 280 

Following Crow et al. (2015), time series of SM and LH products were transformed 281 

into temporal ranks before applying (8), which yields coefficients of determination in 282 

Spearman rank space. As long as the relationship between SM and LH remains monotonically 283 

increasing, these coefficients will not be impacted by nonlinearity in functional dependence 284 



of LH on SM. In addition, given the limited number of weeks (maximum 364) in which all SM 285 

and LH data were simultaneously available from January 2007 to December 2013, the 286 

coupling strength metric obtained from (8) was applied for all possible combinations of 287 

SM/LH reference pairs to reduce sampling uncertainty. In total, eight different estimates of 288 

𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖,𝑙𝑙 can be acquired: 1) 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃/𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 , 2) 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃/𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀, 3) 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃/289 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 4) 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴/𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 , 5) 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴/𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀, 6) 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴/𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 7) 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿/𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 , and 8) 290 

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿/𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀. This list couples all possible SM/LH combinations with the notable exception 291 

of 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿/𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  since error cross-correlation is expected in SM and LH products generated 292 

by the same LSM. Subsequently, the median of all eight estimates was utilized as the robust 293 

estimate (Huber, 2011) of true SM/LH coupling strength 𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]. Uncertainty due 294 

to limited temporal sampling was quantified via a 500-member boot-strapping analysis 295 

(Efron and Tibshirani, 1994). Each median replicate was obtained by sampling half of the 296 

original sample size with replacement for all eight reference pairs. The standard deviation 297 

of boot-strapped replicates was then used to characterize the sampling error. 298 

Only warm-season SM/LH coupling results were considered in the analysis. This 299 

required differential seasonal filtering in various latitude bands which was empirically 300 

defined to be comparable with other similar climate studies (Dirmeyer, 2011; Phillips and 301 

Klein, 2014; Seneviratne et al., 2013; Teuling et al., 2005). For tropical regions (23.25° N to 302 

23.25° S), all 12 months were included. In the subtropics (23.25° N to 35° N and 23.25° S to 303 

35° S), results were based on either May−October data (in the Northern Hemisphere) or 304 

November−April data (in the Southern Hemisphere). In temperate zones (>35° N and >35 ° 305 

S), results were based on June-July-August data (in the Northern Hemisphere) or December-306 

January-February data (in the Southern Hemisphere). Global analyses were conducted for 307 



both original and anomaly time series data. The latter was obtained by subtracting a fixed 308 

(2007−2013) seasonal climatology calculated by taking the mean (across the entire 7-year 309 

data record) of all SM or LH estimates within a 13-week moving window centered on a 310 

particular week of the year. 311 

312 

3. Results313 

Our global investigation of SM/LH coupling strength is based on weekly RS and LSM 314 

time series data aggregated over each 0.25° grid. For each grid, at least 80 collocated samples 315 

were required for applying (8). TC generally requires a minimum level of mutual cross-316 

correlation between products in each triplet to yield stable results. Therefore, a minimum 317 

Spearman rank coefficient of determination (𝑅𝑅2) of 0.03 [-] was required for all pairwise 318 

combinations within both the SM and LH triplets. Pixels not passing this cross-correlation 319 

threshold were masked from the analysis. This threshold was determined as a compromise 320 

between maintaining sufficient global coverage and filtering non-physical results (Crow et 321 

al., 2015). As described above, all global results were based on the period 2007-2013 and the 322 

(latitude-dependent) seasonal masking described in Section 2.5. 323 

324 

3.1 Verification at AmeriFlux Tower Sites 325 

The central consideration in applying TC is confidence in the mutual independence of 326 

the three estimates selected to comprise the SM and LH triplets. Our two RS-based LH 327 

products (ALEXI-TIR and ALEXI-MW) are formulated from the same two-source energy 328 

balance model. Therefore, concerns about the mutual independence of their errors are 329 



warranted. Similar cross-dependence concerns exist for RS-based SM products acquired 330 

from passive and active microwave approaches. 331 

Therefore, to test the validity of using two different RS products within the same 332 

triplet, we replicated the AmeriFlux tower-based results in Crow et al. (2015) via the 333 

substitution of ground-based SM and LH observations with comparable RS-based products. 334 

That is, the flux tower-based LH is replaced with ALEXI-MW LH estimates and ground-based 335 

SM is replaced with SM derived from ASCAT observations. If cross-correlation exists within 336 

the two RS-based LH products (ALEXI-MW and ALEXI-TIR) or within the two RS-based SM 337 

products (ASCAT and CCI-PASSIVE), these substitutions should be associated with 338 

systematic changes in TC-based correlations acquired via (8). 339 

Results from this sensitivity analysis are shown in Figure 1. Note that the black bars 340 

plot the same TC estimates as Figure 1 in Crow et al. (2015). By bringing the RS-based ALEXI-341 

MW into the LH triplet (in red), generally consistent TC results in Figure 1 can be obtained 342 

with and without the use of flux tower-based LH observations. Likewise, replacing the 343 

ground-based SM with ASCAT retrievals (in blue) does not qualitatively change TC results 344 

over the AmeriFlux sites. Slightly larger discrepancies are found at the FPE site where TC 345 

results derived using ground measurements (black bar) have a higher level of uncertainty 346 

than results derived using only model and RS data. This is likely due to the elimination of 347 

spatial representative errors (between local-scale ground-based observation and coarse-348 

scale RS- and model-based data) when ground-based observations are not utilized. 349 

This consistency in TC results suggests that, despite their use of the same retrieval 350 

algorithm framework, differences in the LST inputs used to force ALEXI-TIR and ALEXI-MW 351 

LH are profound enough that their LH retrievals can be considered effectively independent 352 



for TC applications. Therefore, it is appropriate to utilize ALEXI-MW as another source of RS-353 

based LH for the global investigation of SM/LH coupling. Furthermore, the simultaneous use 354 

of active and passive-based SM retrievals in the same triplet does not appear to be 355 

problematic in the application of (8). Additional discussion on the impact of any residual 356 

error cross-correlation existing between RS-based LH and SM products on the TC estimates 357 

is provided below in Section 4.1. 358 

359 

3.2 Robustness to Land Surface Model Variations 360 

Another important diagnostic for TC results is robustness to variations in the LSM-361 

based estimates used to construct the data product triplet. Due to variations in the processes 362 

and parameterization schemes embedded in LSMs, different models exhibit large 363 

discrepancies in the degree of direct SM/LH coupling they predict (see Figure 2). Among the 364 

four LSMs considered here, the Noah model (Figure 2a) has the strongest warm-season 365 

SM/LH coupling with a global mean and median 𝑅𝑅2[𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿] of 0.53 [-] and 0.70 [-], 366 

respectively. On the contrary, SM and LH coupling is relatively weaker in the VIC model 367 

which has a global mean 𝑅𝑅2[𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿] of 0.45 [-] and median of 0.54 [-]. Notice that the 368 

spatial patterns of SM/LH coupling strength also vary across LSMs. Both Noah (Figure 2a) 369 

and VIC (Figure 2b) have shown strong coupling (> 0.5 [-]) between SM and LH over arid 370 

regions, such as the Sahara and Central Australia. In contrast, 𝑅𝑅2[𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿] results for 371 

CLM (Figure 2c) and CLSM (Figure 2d) suggest moderate to marginal SM/LH coupling in 372 

these areas. Differences in the degree of SM/LH coupling strength across LSMs are also 373 

observed over western United States, South America, and the Arabian Peninsula. Overall, 374 

various LSMs predict distinct magnitudes and spatial patterns in coupling strength. 375 



While these LSM differences are prominent, TC results acquired from (8) should, in 376 

theory, be insensitive to our choice of a particular LSM to provide the third member of the 377 

data product triplet. To examine the robustness of TC-based SM/LH coupling estimates 378 

against various models, SM and LH products from four LSMs have been individually applied 379 

in (8) and results are shown in Figure 3. As noted above, grids with low mutual correlation 380 

(𝑅𝑅2[−] < 0.03 [-]) among either SM or LH triplets are masked. The TC estimates derived with 381 

different LSMs dataset yield generally consistent magnitudes of SM/LH coupling strength. In 382 

addition, all four cases in Figure 3 illustrate a strikingly similar spatial distribution of areas 383 

with enhanced SM/LH coupling. Based on TC estimates, strong coupling between SM and LH 384 

are observed over Africa, western North America, the Cerrado region of Brazil, Central Asia, 385 

and Australia except for coastal regions with high vegetation density. 386 

Figure 4 shows the variations of direct cross-correlation and TC-based estimates of 387 

SM/LH coupling across LSMs. Prior to application of TC, different parameterization schemes 388 

in LSMs lead to distinct patterns and magnitudes of coupling strength, and thus large inter-389 

model spread for correlation results (𝜎𝜎 < 𝑅𝑅2[𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿] >) in Figure 4a. However, TC-390 

based coupling strength estimates are generally robust to the choice of LSM and exhibit 391 

much lower inter-model spread (𝜎𝜎 < 𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇] >), as shown in Figure 4b. The 392 

differences in inter-model spreads are compared along the latitudinal transect in Figure 4c, 393 

showing consistency in TC estimates across LSMs. In addition, the temporal sampling errors 394 

are estimated through boot-strapping analysis as described in Section 2.5. From Figure 4c, 395 

the remaining variability in TC estimates (blue line) has a comparable magnitude with 396 

respect to the standard deviation (1-sigma) of estimated sampling error (black line). This 397 

suggests that residual LSM-to-LSM variations remaining in TC results can largely be 398 



attributed to inadequate temporal sampling. This lack of bias associated with the use of 399 

varying LSMs lends credibility to our interpretation of (8) as an unbiased reflection of true 400 

SM/LH coupling strength. Therefore, based on encouraging verification results in Figures 1–401 

4, we will use (8) below to critique levels of SM/LH coupling predicted by LSMs and observed 402 

by remotely-sensed SM and RS-based LH products. 403 

404 

3.3 Global Coupling Strength Between Soil Moisture and Latent Heat Flux 405 

SM/LH coupling strength can be directly derived from RS-only datasets (without any 406 

TC calculations). Figure 5a shows averaged RS-based estimates (𝑅𝑅2[𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅]) from 407 

SM/LH RS combinations, i.e., CCI-PASSIVE/ALEXI-TIR, CCI-PASSIVE/ALEXI-MW, 408 

ASCAT/ALEXI-TIR, ASCAT/ALEXI-MW of remotely-sensed SM and RS-based LH retrievals. 409 

Meanwhile, averaged 𝑅𝑅2[𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿] across all four LSMs is shown in Figure 5b. Globally, 410 

the 𝑅𝑅2[𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅] estimates sampled from RS data are generally smaller than 0.4 [-] except 411 

for Central Africa. On the contrary, the LSMs predict much higher levels of coupling 412 

(𝑅𝑅2[𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿] > 0.6 [-]) over the Africa, the Arabian Peninsula, western Asia, Australia, 413 

western North America, and parts of the South America. Comparing RS results in Figure 5a 414 

with LSM results in Figure 5b, large discrepancies exist over both arid and transitional 415 

regions, where the partition of energy fluxes strongly depends on the soil wetness. Moreover, 416 

these significant discrepancies in the estimated magnitudes of SM/LH coupling strength are 417 

mostly due to LSM intrinsic coupling being much higher than RS-predicted coupling. 418 

There are two possibilities for explaining this difference. First, LSMs may 419 

systematically over-represent the levels of coupling. However, considering the random 420 

measurement errors which degrade the accuracy of RS products (Holmes et al., 2018; 421 



Sorensson et al., 2018), a second possibility is that elevated levels of retrieval noise in RS 422 

retrievals are causing them to systematically underestimate true levels of coupling (Findell 423 

et al., 2015). 424 

As was shown by Crow et al. (2015), TC can be used to distinguish between these two 425 

possibilities. In particular, the TC-based approach in (8) corrects for the impact of random 426 

errors in observations and provides an unbiased estimate that is unaffected by either noise 427 

in the RS retrievals or systematic errors in LSM estimates (see Figure 4). Accordingly, a true 428 

coupling estimation can be acquired with the simultaneous availability of SM and LH triplets. 429 

Arithmetically averaged TC-based coupling estimates (𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]) across all four 430 

LSMs are shown in Figure 5c. Grey shading reflects the masking of grid cells with insufficient 431 

mutual correlations among SM or LH products (see above). 432 

Overall, the LSMs appear to predict somewhat more SM/LH coupling in Figure 5b 433 

than TC-based estimates of true coupling strength in Figure 5c. However, there are strong 434 

regional variations in these differences and, as shown above in Figure 2 and Figure 4a, strong 435 

LSM-to-LSM variations are not reflected in Figure 5b. Therefore, direct comparisons 436 

between model predicted and TC estimated coupling strengths are needed to identify 437 

regional biases in LSM SM/LH coupling predictions. To this end, Figure 6 plots the global 438 

distribution of differences between TC-based (𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]) and LSM-based 439 

(𝑅𝑅2[𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿]) coupling results individually for each LSM. All differences within the 2-440 

sigma confidence interval of 𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇], which has a global averaged standard 441 

deviation (obtained via the boot-strapping analysis) of 0.10 [-], have been masked in Figure 442 

6. Therefore, the map indicates regions where LSM SM/LH predictions are significantly443 

different than comparable TC estimates of true coupling strength. 444 



Different LSMs demonstrate distinct spatial patterns of over-/under-coupling 445 

relative to our TC baseline. Generally, more over-coupling is found in Noah and CLM than in 446 

VIC and CLSM. Comparing Noah and TC-based coupling estimates in Figure 6a, Noah appears 447 

to over-predict SM/LH coupling strength (relative to TC) over arid and low-vegetated zones, 448 

including the: Sahara Desert, Arabian Desert, Thar Desert in Indian, Kalahari Desert in South 449 

Africa, Chihuahuan Desert in North Mexico, and arid areas of Central Australia. In addition, 450 

Noah also over-predicts coupling in India and within the Cerrado region of Brazil. Marginal 451 

under-couplings are found in northeastern North America and northern Russia. 452 

However, this over-coupling is not universal. In contrast, extensive under-coupling is 453 

noted in CLM. Most noticeably, bias in CLM SM/LH coupling appears to have a relationship 454 

with underlying vegetation and climate conditions (Figure 6c). Specifically, over-coupling is 455 

primarily found in heavily-vegetated humid regions, while under-coupling is seen in arid or 456 

semi-arid areas with less SM and sparser vegetation coverage (e.g., the western United 457 

States, Central Asia, and Central Australia). Likewise, VIC (Figure 6b) under-couples SM and 458 

LH for certain regions with moderate vegetation density (e.g., eastern North America, the 459 

Cerrado region of Brazil, and Central Africa). As shown in Figure 6d, CLSM predicts generally 460 

similar pattern with VIC except for relatively less SM/LH coupling over the transitional 461 

wet/dry climate zone (near 10° N) in Central Africa. 462 

In TC applications, strong seasonality has been shown to produce non-robust TC 463 

results (Chen et al., 2016). Therefore, we also re-applied (8) to SM and LH anomaly time 464 

series. Anomalies are calculated by subtracting out the long-term seasonal climatology as 465 

described in Section 2.5. Results are shown in Figure 7. As expected, without the strong 466 

seasonal variations in water availability and insolation, the overall coupling strength of 467 



SM/LH (Figure 7) decreases when compared to Figure 5. However, the LSMs still generally 468 

predict more coupling than RS-based estimates. Moreover, the TC-based (anomaly) coupling 469 

strength estimates (Figure 7c) are generally much closer to LSM-based predictions (Figure 470 

7b) than RS-based results. Regions with strong SM/LH coupling are distributed mainly over 471 

transitional zones and semi-arid regions where LSMs also predict similar spatial patterns. 472 

Comparing the baseline TC-based and various LSMs predicted estimates of SM/LH 473 

coupling strength, similar spatial tendencies (with regard to over- versus under-coupling in 474 

LSMs) are found for both the anomaly (Figure 8) and original time series (Figure 6). For the 475 

anomaly analysis, Noah, CLM, and CLSM generally overestimate the coupling across the 476 

globe, among which CLM has the most prominent over-coupled relations. On the other hand, 477 

both VIC and CLM underestimate the coupling over western United States and Central 478 

Australia. In eastern China, all four LSMs systematically predict less SM/LH coupling. 479 

Therefore, taken as a whole, the original (Figure 6) and anomaly (Figure 8) time series 480 

analyses demonstrate consistent results with regard to LSM SM/LH coupling bias. 481 

Percentages of pixels with over-coupling and under-coupling in various LSMs are 482 

summarized for six continents in Figure 9. 483 

484 

3.4 Climate Zone Analysis 485 

It is also potentially useful to examine the performance of LSMs as a function of 486 

climate zone. To this end, LSM- and TC-based coupling estimates from both the original and 487 

anomaly time series are grouped based on their Köppen-Geiger climate zone (Kottek et al., 488 

2006) classification. Detailed descriptions of each climate zone index are included in Table 489 

2. Mean values of 𝑅𝑅2[−] for each climate category are then sorted from high to low mean490 



annual air temperature in Figure 10. Climate zones containing less than 100 grid cells (in 491 

which TC estimates are available) are omitted. 492 

Although LSM- and TC-based coupling estimates differ in exact absolute values, the 493 

general trends with regard to different climate zones are consistent. All LSMs predict 494 

relatively strong coupling between SM and LH over tropical (As and Aw) and arid (BWk, 495 

BWh, BSk, and BSh) climate zones in Figure 10a. For warm temperate climate zones, the 496 

coupling of SM/LH significantly increases with the reduced soil wetness from fully humid 497 

(Cf) to summer dry (Cs) and winter dry (Cw) conditions. This tendency also exists for colder 498 

continental climate zones from Df to Ds and Dw, except for Dsc where summer is usually dry 499 

(limited soil water availability) and cool (low temperature). For climate zones with 500 

comparable precipitation conditions, SM/LH coupling generally decreases with reduced 501 

summer maximum air temperature from Dsa (hot summer) to Dsb(warm summer) and Dsc 502 

(cold summer). Moving from the original to anomaly time series (Figure 10b), one exception 503 

is found for tropical savannah climate zone where LSMs predict less anomaly coupling. 504 

When compared against the robust TC-based results (in black circles), LSMs slightly 505 

overestimate the coupling over tropical arid and semi-arid climate zones, including As 506 

(equatorial savannah with dry summer), Aw (equatorial savannah with dry winter), BW 507 

(cold arid desert), and BS (hot arid desert). Noah, VIC, and CLSM predict a relatively accurate 508 

coupling for regions with adequate precipitation, such as Cf and Df. By contrast, CLM 509 

generally predicts more coupling than TC analysis for these climate zones. On the other hand, 510 

VIC is the only one (out of four LSMs) to under-represent the coupling over Ds (continental 511 

climate with dry summer). In addition, LSMs are systematically over-coupled for Dw 512 

(continental dry winter) climate zones. 513 



514 

4. Discussion515 

Over the past two decades, various ground-based observational networks of land 516 

surface fluxes and meteorological states have been established for the validation of RS-based 517 

retrievals and model-based simulations (Dorigo et al., 2011; Baldocchi et al., 2001). 518 

However, these networks are generally located in either North America or Europe and 519 

therefore capture a relatively limited range of land surface and climatic conditions for global 520 

investigations. In addition, the spatial scale differences between point-scale ground 521 

measurement and grid-averaged RS product or model simulation can imperil the accuracy 522 

of coupling estimates acquired from point-scale ground observations. Note that the spatial 523 

representative mismatch across measurements can be partially alleviated by using various 524 

remotely-sensed products with comparable spatial resolutions for global LSMs. 525 

Nevertheless, random measurement errors can still induce bias into the sampled correlation 526 

between observed variables (Crow et al., 2015). Recently, using an aggregated surface flux 527 

dataset FLUXNET2015, Dirmeyer et al. (2018) explored both the atmospheric leg (sensible 528 

heat flux/lifting condensation level) and terrestrial leg (soil moisture/latent heat flux) of 529 

land-atmosphere coupling across offline/coupled LSMs and multiple reanalysis products. 530 

Their results suggested a potentially over-coupled relationship between SM and LH across 531 

LSMs. However, their analysis was confined by both the limited geographical extent of the 532 

FLUXNET sites and the strong scale contrast between these point-scale observations and 533 

coarse-scale LSM grids. Therefore, an unbiased (and spatially extensive) estimate of the true 534 

coupling of two geophysical variables is needed to eliminate both spatial scale differences 535 

and compensate for the biasing impact of random measurement errors. 536 



RS-based products are usually subject to random errors originated from instrument 537 

sensitivity, sensor calibration, retrieval physics and parameterization (Congalton, 1991). 538 

Traditional pairwise correlation calculations that ignore random errors may not be 539 

appropriate for characterizing the relationship between two variables. For example, the 540 

direct use of RS-based estimates substantially under-predicts SM/LH coupling strength 541 

(Figure 5a and 7a). A naïve interpretation of this results would suggest that LSMs strongly 542 

over-couple SM and LH over almost all regions of the world (see Figure 5b and 7b). However, 543 

when explicitly accounting for the random measurement errors via a TC analysis, a 544 

significantly larger value of true SM/LH coupling (Figure 5c and 7c) is obtained as compared 545 

to underlying RS-based estimates (Figure 5a and 7a). 546 

Consequently, the diagnosis of LSM coupling biases becomes much more complex and 547 

geographically variable. Among the four LSMs considered here, VIC turns out to be generally 548 

accurate in describing the relationship between SM and LH (Figure 6b and 8b). Nevertheless, 549 

certain regional biases of both over- and under-coupling are still observed in LSMs with 550 

respect to TC results (see Figure 6 and Figure 8) due to imperfect model physics. In summary, 551 

it is important to consider the impact of random errors in RS products when applying 552 

canonical statistical measures (e.g. correlation coefficient, root-mean-square-error) to 553 

evaluate or benchmark LSMs. The application of (8) is recommended for related 554 

applications, especially when multiple RS products are available. 555 

556 

4.1 Impact of Cross-correlated Error 557 

A critical issue when applying the TC approach in (8) is the potential for mutual error 558 

dependency among data members in each triplet, specifically for the LH triplet containing 559 



both ALEXI-TIR and ALEXI-MW products and the SM triplet containing both AMW and PMW 560 

retrievals. Previous studies indeed suggest that error cross-correlation also exists for AMW 561 

and PMW SM retrievals (Gruber et al., 2016b; Chen et al., 2016). Our analysis of cross-562 

correlation at AmeriFlux tower sites indicates that differences in LST inputs for ALEXI-TIR 563 

and ALEXI-MW LH products or retrieval processes (and spectral regimes) for AMW and 564 

PMW SM products appear to be sufficient for ensuring error independence and the confident 565 

application of TC. However, moving from a handful of sites to global analysis, the existence 566 

of residual non-zero error cross-correlation among LH or SM products may not be negligible 567 

and its possible effect on estimates of coupling strength needs to be discussed. 568 

Appendix A provides a detailed description of the impact of potentially neglected 569 

error cross-correlation on TC-based coupling estimates derived via (8). Analytical 570 

derivations show that positive error cross-correlation between two datasets in the triplet 571 

would negatively bias the estimated true signal variance when using the third independent 572 

member as the reference. Thus, in the case of cross-correlated ALEXI-TIR and ALEXI-MW LH 573 

errors, a positively-biased estimate of SM/LH coupling strength would be obtained by 574 

utilizing a LSM-based LH product as a reference. In contrast, if either ALEXI-TIR or ALEXI-575 

MW LH is used as the reference, the derived estimate can be negatively-biased. Therefore, 576 

cross-correlated errors in RS-based LH products would increase the spread in coupling 577 

strength estimates acquired across all possible reference pairs. A similar effect would 578 

accompany the presence of correlated errors in ASCAT (AMW) and CCI-PASSIVE (PMW) SM 579 

products (see Appendix A for details). 580 

As described in Section 2.5, the sensitivity of our final TC-based coupling results to 581 

this spread is minimized here through our use of a median operator to summarize a single 582 



result from across all eight possible reference pair choices. Specifically, four out of the eight 583 

reference pairs are based on either LSM-based LH or SM products (as described in Section 584 

2.5) and can potentially lead to biased higher estimates of SM/LH coupling strength in (8). 585 

On the contrary, the other four (biased lower) estimates are obtained using RS-based 586 

products as references (see Appendix A). This suggests that our approach should be 587 

reasonably robust to the presence of error cross-correlation in either RS-based LH and SM 588 

products. Note that this interpretation is supported by earlier results shown in Figure 1. 589 

590 

4.2 Implications for Land-atmosphere Coupling 591 

Under all circumstances, our results consistently indicate that the random 592 

observational errors in RS-based products greatly complicate their application for 593 

benchmarking LSM coupling results. However, by using the robust TC estimates derived in 594 

part from RS products (Figure 5c and Figure 7c), regions with over- or under-coupled 595 

relationship across different LSMs can be identified (Figure 6 and Figure 8). The spatial 596 

extent and distribution of over-coupled predictions are comparably similar among various 597 

LSMs over the globe, especially for Noah, CLM, and CLSM. Interestingly, all four LSMs tend to 598 

over-predict SM/LH coupling over the central Great Plains of North America, the Sahel, India, 599 

and coastal Australia (Figure 6 and 8). These regions are commonly known as “hot-spots” of 600 

strong land-atmosphere coupling (Koster et al., 2004). Benchmarking the performance of 601 

LSMs over these hot-spot regions is of vital importance for seasonal weather and climate 602 

forecasting. On the other hand, all four LSMs tend to slightly under-represent the SM/LH 603 

coupling relationship in China. VIC and CLM generally under-predict the coupling over less 604 



intense hot-spots regions, including western North America, Central Asia, and Central 605 

Australia. 606 

When coupled with climate models, bias in the LSM’s SM/LH coupling strength can 607 

affect the surface partitioning of sensible and latent heat fluxes and thus water and energy 608 

interactions along the land-atmosphere interface. This can result in biased predictions of 609 

extreme event frequencies, such as heatwaves and droughts (Ukkola et al., 2016a, 2016b). 610 

Note that different LSMs vary in process representation of soil surface-subsurface hydrology, 611 

groundwater storage, and plant water components (Egea et al., 2011). It is therefore critical 612 

to pinpoint the exact processes that contribute to the unrealistic characterization of water 613 

and energy exchanges in LSMs. However, this is beyond the scope of this work and will be 614 

addressed in our forthcoming work by exploring various processes and parameterization 615 

schemes in the modular Noah-MP model (Niu et al., 2011). 616 

617 

5. Conclusions618 

Based on the simultaneous availability of multiple SM and LH products from satellite 619 

and LSMs, this work provides an unbiased estimate of SM/LH coupling strength at the global 620 

scale. In particular, the TC strategy of Crow et al. (2015) is applied globally, for the first time, 621 

to compensate for the impact of random observational errors on sampled correlation 622 

statistics — an effect which is commonly neglected. This allows us to obtain quasi-global 623 

maps of unbiased SM/LH coupling strength estimates for comparisons against comparable 624 

LSM predictions. 625 

Using the TC-based robust estimate, several important conclusions can be drawn. 626 

First, it is found that with the existence of random measurement errors, RS-based coupling 627 



strength estimates are prone to large negative biases and thus insufficient for directly 628 

benchmarking the true SM/LH coupling relationship. Past studies using ground-based 629 

measurements are likely to subject to the same limitations (Dirmeyer et al., 2018; Ukkola et 630 

al., 2016b). By contrast, the TC-based approach in (8) provides a means for compensating 631 

for this effect. When observational errors are properly accounted for, significantly higher 632 

levels of true SM/LH coupling strength relative to RS-based estimates (Figure 5 and 7) are 633 

obtained. Regions with strong SM/LH coupling are found over western Northern America, 634 

the Sahel, Central Asia and Australia. Relative to TC-based results, regional areas of over- or 635 

under-coupling in LSMs are identified. 636 

Overall, results are consistent with Dirmeyer et al. (2018) in indicating that LSMs 637 

generally predict over-coupling. However, large regional and LSM-to-LSM variations are also 638 

observed. For example, CLM appears to be under-coupled in semi-arid areas and over-639 

coupled in heavily-vegetated humid regions. In addition, areas of over-coupling appear to be 640 

concentrated in regions of globe with strong land-atmosphere coupling. Such identification 641 

of regional biases can guide subsequent efforts to improve LSM physics and/or 642 

parameterizations. Note that TC-based coupling strength estimates are generally robust to 643 

the choice of a particular LSM to provide the third (SM or LH) member of each triplet. 644 

Moreover, both the original and anomaly time series analyses yield overall consistent 645 

results, lending credibility to our conclusions. 646 

One obvious limitation here is our focus on a set of relatively dated LSM versions 647 

provided by the GLDAS-1 project. This is particularly for CLM which has evolved from CLM 648 

2.0 (applied in GLDAS-1 and thus examined here) to CLM 4.5 with some fundamental 649 

changes. Future work with more recent LSM versions is clearly needed. Likewise, a daily-650 



scale SM/LH coupling analysis would be preferable relative to the weekly time-scale used 651 

here. Expected enhancements to ALEXI LH products should make this possible in the near 652 

future. Improvement to ALEXI LH products are also expected via the inclusion of Clouds and 653 

Earth’s Radiant Energy Systems (CERES) meteorological forcing datasets (Wielicki et al., 654 

1996; https://ceres.larc.nasa.gov/). 655 

In contrast to previous research focusing on the use of ground-based measurements 656 

(Ukkola et al., 2016b; Dirmeyer et al., 2006a; 2018) or multi-model cross-comparison (Best 657 

et al., 2015; Haughton et al., 2016), our results are primarily constructed from multiple 658 

independent RS-based observations and model products (free of spatial representativeness 659 

differences) and yield an objective benchmark for LSM coupling strength estimates. More 660 

importantly, this analysis provides quasi-global results that are not restricted to sparse flux 661 

tower locations. As a result, climate zones with either over- or under-coupled SM/LH 662 

relations in LSMs are readily identified and can be prioritized for future LSM improvement 663 

and multi-model comparison experiments, such as the Land Surface, Snow and Soil moisture 664 

Model Intercomparison Project (LS3MIP; Van den Hurk et al., 2016) conducted as part of the 665 

sixth phase of the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016). 666 

Moreover, the TC-based coupling metric can also be utilized for analyzing other coupled 667 

geophysical variables when its prerequisites are satisfied. For example, the relationship 668 

between SM and subsequent (or antecedent) precipitation (Guillod et al., 2015; Tuttle and 669 

Salvucci, 2016) or SM and maximum summertime air temperature (Miralles et al., 2012). 670 

671 
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Appendix A 682 

The accuracy of any TC-based estimate depends strongly on the validity of the error 683 

independence assumption. In the presence of non-zero error cross-correlation (Gruber et al., 684 

2016b), direct usage of (4) and (8) can lead to biased estimates. Specifically, if there only 685 

exists positive error cross-correlation between dataset 𝑋𝑋𝑗𝑗  and 𝑋𝑋𝑘𝑘 (𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑗𝑗 , 𝜀𝜀𝑘𝑘] > 0, 686 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜀𝜀𝑖𝑖 , 𝜀𝜀𝑗𝑗� = 0, and 𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑖𝑖 , 𝜀𝜀𝑘𝑘] = 0), the estimated true signal variance 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]𝑖𝑖 using dataset 687 

𝑋𝑋𝑖𝑖 as the reference can be biased low with regard to actual variance of true signal 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇] 688 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]𝑖𝑖 = 𝛽𝛽𝑖𝑖−2
 𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗]𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑖𝑖,𝑋𝑋𝑘𝑘]

𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘]
= 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]2

𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]+𝛽𝛽𝑗𝑗
−1𝛽𝛽𝑘𝑘

−1𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑗𝑗,𝜀𝜀𝑘𝑘]
 (A1) 689 

Instead, when using dataset 𝑋𝑋𝑗𝑗  or 𝑋𝑋𝑘𝑘 as the reference, the estimated true signal variance 690 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]𝑗𝑗 or 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]𝑘𝑘 are positively biased 691 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]𝑗𝑗 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇] + 𝛽𝛽𝑗𝑗−1𝛽𝛽𝑘𝑘−1𝐶𝐶𝐶𝐶𝐶𝐶�𝜀𝜀𝑗𝑗 , 𝜀𝜀𝑘𝑘� (A2) 692 



Therefore, the estimated coefficient of determination 𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖,𝑙𝑙 derived 693 

from (8) becomes biased high when SM dataset 𝑆𝑆𝑆𝑆𝑖𝑖 and/or LH dataset 𝐿𝐿𝐿𝐿𝑙𝑙 are chosen as the 694 

reference 695 

𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖,𝑙𝑙 ≡
𝐶𝐶𝐶𝐶𝐶𝐶[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖,𝑙𝑙

2

𝑉𝑉𝑉𝑉𝑉𝑉[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉[𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑙𝑙
696 

=
𝐶𝐶𝐶𝐶𝐶𝐶[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑖𝑖,𝑙𝑙

2 ×�𝑉𝑉𝑉𝑉𝑉𝑉[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]+𝛽𝛽𝑗𝑗
−1𝛽𝛽𝑘𝑘

−1𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑗𝑗,𝜀𝜀𝑘𝑘]�×�𝑉𝑉𝑉𝑉𝑉𝑉[𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]+𝛽𝛽𝑚𝑚−1𝛽𝛽𝑛𝑛−1𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑚𝑚,𝜀𝜀𝑛𝑛]�

𝑉𝑉𝑉𝑉𝑉𝑉[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]2×𝑉𝑉𝑉𝑉𝑉𝑉[𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]2
(A3) 697 

where 𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑗𝑗 , 𝜀𝜀𝑘𝑘] and/or 𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑚𝑚, 𝜀𝜀𝑛𝑛] are (positive) non-zero cross-correlated errors 698 

between 𝑆𝑆𝑆𝑆𝑗𝑗  and 𝑆𝑆𝑆𝑆𝑘𝑘 and/or 𝐿𝐿𝐿𝐿𝑚𝑚 and 𝐿𝐿𝐿𝐿𝑛𝑛. By contrast, in the case of 𝑆𝑆𝑆𝑆𝑗𝑗/𝐿𝐿𝐿𝐿𝑚𝑚 is chosen as 699 

the reference pair, the estimated coefficient of determination 𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑗𝑗,𝑚𝑚 will be 700 

biased low 701 

𝑅𝑅2[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑗𝑗,𝑚𝑚 ≡
𝐶𝐶𝐶𝐶𝐶𝐶[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑗𝑗,𝑚𝑚

2

𝑉𝑉𝑉𝑉𝑉𝑉[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑗𝑗𝑉𝑉𝑉𝑉𝑉𝑉[𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑚𝑚
702 

=
𝐶𝐶𝐶𝐶𝐶𝐶[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑗𝑗,𝑚𝑚

2

�𝑉𝑉𝑉𝑉𝑉𝑉[𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]+𝛽𝛽𝑗𝑗
−1𝛽𝛽𝑘𝑘

−1𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑗𝑗,𝜀𝜀𝑘𝑘]�×�𝑉𝑉𝑉𝑉𝑉𝑉[𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]+𝛽𝛽𝑚𝑚−1𝛽𝛽𝑛𝑛−1𝐶𝐶𝐶𝐶𝐶𝐶[𝜀𝜀𝑚𝑚,𝜀𝜀𝑛𝑛]�
(A4) 703 

Analogous biases also exist for the reference pairs of 𝑆𝑆𝑆𝑆𝑗𝑗/𝐿𝐿𝐿𝐿𝑛𝑛, 𝑆𝑆𝑆𝑆𝑘𝑘/𝐿𝐿𝐿𝐿𝑚𝑚, and 𝑆𝑆𝑆𝑆𝑘𝑘/𝐿𝐿𝐿𝐿𝑛𝑛. 704 

Here, eight reference pairs are utilized to obtain estimates of SM/LH coupling 705 

strength using (8). Concerning the potential positive cross-correlated errors between ALEXI-706 

TIR and ALEXI-MW LH products and/or ASCAT and CCI-PASSIVE SM products, four 707 

reference pairs —using LSM SM or LH as a reference— tend to produce positively biased 708 

estimates (A3), i.e., 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃/𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴/𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿/𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 , 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿/𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀. Instead, the 709 

other four estimates are biased lower (A4) using reference pairs of 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃/𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 , 710 

𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃/𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴/𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 , and 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴/𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀. Therefore, the existence of error cross-711 

correlation will tend to increase the spread of coupling strength estimates acquired from 712 

eight reference pairs. Nevertheless, given that it is obtained via a median operator (applied 713 



to all eight possible reference choices), final TC-based coupling estimates should be 714 

relatively robust to this tendency. 715 

716 

Appendix B 717 

Table B1. Basic attributes of a set of AmeriFlux sites used here and Crow et al. (2015). 718 

Abbreviation AmeriFlux Site Latitude/Longitude 
SRM Santa Rita Mesquite 31.821˚/-110.866˚ 
SRC Santa Rita Creosote 31.908˚/-110.840˚ 
WHS Lucky Hills 31.744˚/-110.052˚ 
WKG Kendall Grasslands 31.737˚/-109.942˚ 
TON Tonzi Ranch 38.432˚/-120.966˚ 
AUD Audubon Grasslands 31.591˚/-110.509˚ 
SDH Sand Hills Dry Valley 42.069˚/-101.407˚ 
SUH Sand Hills Upland Dune 42.066˚/-101.367˚ 
ARM ARM-CART 36.606˚/-97.489˚ 
BLO Blodgett Forest 38.895˚/-120.633˚ 
DK1 Duke Open Field 35.971˚/-79.093˚ 
DK2 Duke Hardwoods 35.974˚/-79.100˚ 
DK3 Duke Pine 35.978˚/-79.094˚ 
FPE Fort Peck 48.308˚/-105.102˚ 
NE2 Mead Irrigated 41.164˚/-96.470˚ 
NE3 Mead Rainfed 41.180˚/-96.440˚ 
IB1 Fermi Agricultural 41.859˚/-88.223˚ 
IB2 Fermi Prairie 41.841˚/-88.241˚ 
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Figures 938 

939 

940 

Figure 1. TC-based SM/LH coupling strength estimates acquired from a variety of sources 941 

over a set of AmeriFlux sites (see Appendix B). Black symbols (“TOWER”) replicate earlier 942 

results in Crow et al. (2015) based on using ground/tower-based SM and LH observations 943 

(plus Noah SM, Noah LH, PMW SM, and ALEXI-TIR LH) to complete the triplet. Red symbols 944 

(“ALEXI-MW”) capture the impact of using ALEXI-MW LH in place of flux tower observations. 945 

Blue symbols (“RS-Only”) capture the impact of further replacing ground-based SM 946 

observations with AMW SM retrievals (thus eliminating all dependence on ground-based 947 

observations). The consistency demonstrates the applicability of selected RS-based SM and 948 

LH in place of ground-based data for TC analysis. 949 
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952 

953 

954 

Figure 2. Variations of predicted warm-season SM/LH coupling strength between the LSMs: 955 

(a) Noah, (b) VIC, (c) CLM, and (d) CLSM. Parallel lines at different latitudes indicate the956 

delineation of tropical, sub-tropical and temperate zones for defining the warm-season 957 

period. White land grid cells indicate regions with insufficient RS-based retrievals for 958 

comparison (“NoData” in legend). 959 
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963 

964 

Figure 3. TC-based estimates of warm-season SM/LH coupling strength with LSM SM and LH 965 

datasets obtained from the (a) Noah, (b) VIC, (c) CLM, and (d) CLSM LSMs. The generally 966 

consistent magnitudes and agreement in spatial patterns demonstrate the robustness of TC 967 

results with respect to LSM model choice. 968 
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971 

972 

973 

Figure 4. Inter-model variations (expressed as standard deviations) in warm-season SM/LH 974 

coupling strength across different (a) LSMs and (b) TC-based estimates with independent 975 

LSM as input. Mean standard deviations along the latitudinal transect are show in (c), as well 976 

as the 1-sigma sampling error (black line) obtained from a boot-strapping analysis. 977 
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979 

980 

Figure 5. Global mean estimates of warm-season SM/LH coupling derived from (a) RS-based 981 

products, (b) LSMs, and (c) TC-based estimates. 982 
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985 

 986 

Figure 6. Differences of warm-season SM/LH coupling strength between model predictions 987 

and TC-based estimates for the (a) Noah, (b) VIC, (c) CLM, and (d) CLSM LSMs. Grids within 988 

the 2-sigma confidence interval are masked (see grey shading). 989 
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 993 

Figure 7. Same as Figure 5 but for SM and LH anomaly time series. 994 
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998 

Figure 8. Same as Figure 6 but for SM and LH anomaly time series. 999 
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1003 

1004 

Figure 9. Percentages of pixels with SM/LH over-coupling (dark red) and under-coupling 1005 

(dark blue) in LSMs’ predictions as compared to the TC-based estimates for six continental 1006 

regions. Results are based on both (a) original and (b) anomaly time series of SM and LH. 1007 

Percentages of pixels with (non-significant) differences between LSM- and TC-based 1008 

coupling strength estimates within a 2-sigma confidence interval are in gray. 1009 

1010 

'.:!: 1.0 

~ 0.8 
"' ~ 
'c; 0.6 

"' " ;o.4 
i:: 
1l 0.2 ... 
" i:,.. 0 

"' " ;o.4 
i:: 
1j 0.2 ... 
" i:,.. 0 

North America South America 
(a) Original Time Series 

Europe Africa Asia Australasia 



1011 

1012 

1013 

Figure 10. Aggregated mean values of warm-season SM/LH coupling strength for various 1014 

Köppen-Geiger climate zones based on both (a) original and (b) anomaly time series analysis. 1015 

Grey bars (and right vertical axis) indicate the number of grids with valid TC results. 1016 
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Table 1018 

Table 1. Basic information for SM and LH used in the analysis. 1019 

Product Name Key Sources Spatial 
Resolution 

Temporal 
Resolution Temporal Range 

PMW SM (ESA 
CCI PASSIVE)  

AMSR-E LPRM SM 
AMSR-2 LPRM SM 

SMOS LPRM SM 
0.25° Daily 1978–2015 

AMW SM 
(EUMETSAT) ASCAT TU-Wien SM 25 km Daily 2007 onwards 

ALEXI-TIR MODIS LST 0.05° Weekly 2003–2013 

ALEXI-MW MW-LST (Section 2.3) 0.25° Weekly 2003–2013 

GLDAS-2.1 
NOAH 

GDAS, GPCP, AGRMET 
(Section 2.4) 0.25° 3-hourly 2000 onwards 

GLDAS-1 VIC GDAS, GPCP, AGRMET 1.0° 3-hourly 1979 onwards 

GLDAS-1 CLM GDAS, GPCP, AGRMET 1.0° 3-hourly 1979 onwards 

GLDAS-2.0 
CLSM 

Princeton 
Meteorological 

Forcing 
0.25° Daily 1948-2014 

 1020 

Table 2. Explanations for climate classification index (adopted from Kottek et al. (2006)). 1021 

Main Climate Precipitation Temperature 
A: equatorial W: Desert h: hot arid 
B: arid S: Steppe k: cold arid 
C: warm temperate f: fully humid a: hot summer 
D: continental s: summer dry b: warm summer 
E: polar w: winter dry c: cool summer 

m: monsoonal d: extremely continental 
F polar frost 
T polar tundra 

1022 




